REPORT No. 27.

THEORY OF AN AIRPLANE ENCOUNTERING GUSTS, HI.

By Epwmn Browenn WILSON.

The following is an immediate continuation of my two previous papers on the same sub-
ject which appeared in these Reports, First Year, pages 52-75, and Third Year, pages 405-431,
the latter being a reprint of my contribution to the Proceedings American Philosophical Society
(Philadelphia), volume 56, pages 212-248. In my second paper I pointed out: (1) That the
study of a gust of the type Je™ sin pt, tuned both in damping and in period to the natural
motion of the machine, might be important; (2) that the solution for this case by Brodetsky
treated only the particular integral without taking account of the fact that the constents of
integration in the complementary function might be such as largely to upset any conclusion
that such a gust produces violent motions; (3) that & new method for solving linear equations
hed been developed by Bromwich, which was suited to determine the motion for any particular
gust, when the machine started from equilibrium, without the trouble of determining the
constants of integration in the complementery function.

1 shall now apply Bromwich’s method to the calculation of the effect of a head-on gust of
the form u,=Je¢™ sin pt where n=.0654, p=.187, as in the case of the slow oscillation for
the Curtiss JN2. Inasmuch as the method depends on the use of the theory of functions of a
complex variasble, which is a mathematical subject of prime importance to any aeronautical
engineer who would have that knowledge of fluid motion which is regarded in high quarters as
essential, and further inesmuch as neither the theory of functions nor Bromwich’s special
method is likely to become as familiar as they should be to engineers or physicists without
detailed directions for and examples of the application of such ways of calculating, I may be
pardoned for the somewhat lengthy presentation of matters elementary for the pure mathe-
matician.

Suppose it be required to solve the equation

g;—z + 21% + (@ +nt)z = Fe—* cos (nt+w) (1)

with the supposition that the damped harmonie force on the right is applied at and from the
time {=0, and that at =0 the system is at rest in its position of equilibrium, i. e., =0 and
dz/di=0.

Now trigonometric terms are generally treated by their exponential equivalents, through
the formulas

Npe W N —e
€08 Y =——p— Bl §=—pr—

¢V =cos y-+4 sin y, where 4=+/—1.
The solution of (1) may be obtained by solving the equation obtfained by replacing
cos (nt+w) by its value as the sum of two exponential expressions. A method generally better

is to replace the equation by

e @)

= Felag(—v+ink

and take the real part of the solution since the real part of ¢¥ is cos y.



84 ANNUAL REPORT NATIONAL ADVISORY COMMITTEE FOR AERONATUTICS.

Bromwich states that the solution of (2) subject to the stated conditions is

1
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where

and where the integral must be taken around a curve in the complex A-plane sufficiently large
to include all the points, A= —v—in and A= —v+1in (double), where ¢ becomes infinite. He
further points out that the value obtained for z is none other than the sum of the residues of ¢
by virtue of Cauchy’s theorem.

Now a residue may be given a simple definition. Suppose

1055

where ¢(z) does not vanish when z =g, i. e., no factor z—a may be canceled out, the fraction is
in itslowest-terms.  The function ¢(z) may be expanded by Taylor’s theorem about z=¢ as:

() =¢(a) +¢' @)z —a) +4¢" @)z —a)’+ - - - - -
and
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where A;=¢®(a)/i! with ¢?(a) denoting the ith derivative of ¢(z) taken for the value r=a.
The coefficient A,., which occurs over the factor 2 —a is called the “residue of f(z) at z=a.”

In case n=1, that is, iff(m)a(:ﬁ?z), the residue of f at a is ¢(a).

In case n =2, that is, if f(z) = :_(.xcz 5, the residue of f at a is ¢’ (a).
As applied to the case in hand where

FeueM

) = = =iyt o iny’

the function for the consideration of the value A = —v—4n may be written

Felogt (\ — v —in)=>

===t

!

and the residue of f at A= —v—in is obtained by substituting A= —~v—in in the numerator;
hence residue of f at —v—in = Feee—¢(—2in); and for the consideration of the value
A= —y+tin,

Fe»eM(\ 4 v4-in)™

)= Atv—iny '

and the residue of f at A= —v+14n is the value for this value of X of the derivative:

4 _Feéoet _F{(\tvtin)ted—e¥]
d\ Ntvtin A +vtan)?

which value is
residue of f(\) at —v-in = Felee~r+mt(25nf — 1)(2in)—*.
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Hence the solution for z in (2) is the sum of the residues, or

z=TEFG—' e“{r‘“‘ + et¥(2ini — 1)]-

And the solution for r in (1) is the real part of the above obteinea by substituting for i, e~i»,
e'® their expressions in terms of trigonometric functions. This gives:

r=€—n,—l nt sin (n¢+w)—sin @ sin 'nt:l,

the result stated by Bromwich, without giving the steps in detail.
1f it had been required to solve the equation:

%;;+2u%+ (*+ n?) x= Fe"sin (ni+ w), (1a)

the only change would have been to take the imaginary part, instead of the real part, and
throw out the factor t=+/—1. Thus,

r= 4:,1 et ela [24nE efm — (giné — g—inF)]

-;Tf' e ¢fu [2int (cos ni-+1 sin nd) —24 sin nd]

= —4—2, e (cos w1 sin w) [2int cos nf—2ni sin né—2i sin ni)

= —Zle’ e % (—2ni cos w sin nt—2ai sin. & cos ni+2 sin « sin nd) +

1 (2n¢ cos w cos né—2nt sin « sin n# —2 sin o sin nd)
and the solution of (3) is

.'c=2—f:, &% [ —nt cos (né+w) +cos w sin ni].
For the head gust the equations to be solved are '

D —-Xyu—Xw— (XD +g)0=Xu =X, J e™sin pi,
—Zu+D-Z)w—(Zy+ U) Db=Z u,=2Z,J ™ sin pi,
— M — Mg+ (2D — M D) 6= M, Je™ sin pt.
'These are replaced by equations with Je™+P# instead of Je™ *» ® and the equatior
for &, n, { become
Q‘Xu) F—Xyn— (qu‘l'g) ;-':'XMJ/(}‘ +”"‘P‘£)
- ué"‘O‘_Zw)’I“ (Zq+ U) M"ZuJ/(?\-l-ﬂ—P'i)
— M= Mgn+ (3 — M) £ = M J/0+n—pi).
Next & #, ¢ are obtained by solution and multiplied by ¢*. The results are as follows:
N — (12822 —1.16A2—3.885A—.917) JeM
b = B4 —24.58 —3.335A—017) Ok )’
" — (AL.B57TA—2.458)JeM .
T N —8.49X—24.50—3.385A—.017) (\Fn—p3)
N —.02851NJeM
(e = R 820V — 2450 —3.3850— 017) (A Fn— )

The solutions for u, w, 6, respectively, are the sums of the residues of these three expressions

The denominator factors (since n=.0654, p=.187) into (A+.0854-.1871)(A-+.0854—
1874 (A—4.18+2.434)(\+4.18 —2.43%). It is.necessary to calculate the residues for each o,
the following values of A\: —4.18 +2.43 4,—.0864—.1874,—.0654 +.187i. The first three corre-
spond to single factors of the denominator and are obtained merely by discarding that factor
and substituting the value of X in the rest of the expression; the fourth requires that the double
factor be discarded and that the value of A be substituted in the derivative of what remains.
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The whole of the calculation need not be made. The interest lies almost entirely in the up
and down motion which is given by

z-=f (w—115.560) dt

and for which w and 8 alone need to be determined. One of the advantages of the Bromwich
method lies precisely in this ability to calculate just those elements needed.
We shall begin with 6 and figure the residues of:

—.02851 AJ &

(\1+.0854+.187%) (\+.0854—.1873)° (\F4.18+2.43%) T

For that at A= —4.18+2.43 4 calculate

R .-02851 (—4.18 +2.431) e~4*% (cos 2.43{-+1 sin 2.43f)
t (—4.115+2.6177) (—4.115+2.2437) (4.86:) ~

discarding for the moment the factor —J common to all residues. The rules for dealing
with imaginaries by trigonomestry are helpful. We need the magnitudes and angles of the
quantities:

mag (—4.18+2.431) =4.834, log mag=0.6843, ang=149°83,

mag (—4.115+2.6171)=4.875, log mag=0.6879, ang=147°.54,

mag (—4.115+2.2431) =4.792, log mag=0.6805, ang=151°40.

The angle of the coefficient in R, is —30°.51; the log mag is 6.4038. Hence
R, = (.0002183 —.0001283 1) ¢*¥ (cos 2.43t+1 sin 2.43().

Of this the imaginary part, rejecting 4, is:
A= eg1% (0002183 sin 2.43¢—.0001283 cos 2.436).
Turn nextto the residue, omitting the factor—J, at A= —4.18 ~2.43%, or

R,=-'02851 (—4.18—2.437) ¢*1¥ (cos 2.43¢—1 sin 2.43f)
(—4.115—-2.2431) (—4.115—-2.6172)% (—4.861}

The angle of the coefficient is 26°.65; the log mag is 6.3964. Hence
R, =(.0002226 4-.00011174) % (cos 2.43¢{—4 sin 2.451).
Of this the imaginary part, neglecting 4, is:
B=¢*1%(—.,0002226 sin 2.43¢4.0001117 cgs 2.43%).
Adding A and B, the dependence of # on the short oscillation is
—8fJ =e41%(— 0000043 sin 2.43¢ — .0000166 cos 2.43%). (3)

The effect is very small, indeed quite negligible (compared with (4) below) as might be imagined
from the small results found for other types of gust in the two previous papers.
The residue at A= —.0654 —.187% is

R'_.02851(—.0654—.18711)6""‘““(008 1874 —14 sin 187¢)
—.3741)*(4.115+2.2431) (4.115—2.617

mag (—.0654 —.187i)=.1981, log mag=9.2969, ang=250°.72.
The angle of the coefficient is 74°.58. The log mag is 7.2377. Hence
B, =e¢~"%(cos .187¢—1 sin .187¢)(.0004596 4-.0016667).
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Of this the imaginary part is:
O %58 0004596 sin .187¢+4.001666 cos .187%).

For —0/J there remains only to calculate the residue at A= —.0654- 1871, which is the
hardest of all, since this factor is squared. We have to find

d [ 02851 e .
dn ] (\F.0654 +.1878) N+ 4.18 +2.43%) (A + 4.18 —2.43%)

The derivative of a product is often calculated most easily by taking the logarithm before

differentiation. For:
d _lpi i) ’f(lﬁ dé;:c) or ngg f(z)d 10;5 T

The derivative of the logarithm of the bracket with respect to A is

1 1 1
N+.0854+.187¢ A+418+2.43% A1 4.18—2.43%

As A= —.0654 +.187¢ we have

1
D=X+t_

_ 1 v L 1 1
— 065411873 ' 83741 4.116+2.6174 4.116—2.2431

= —1.1629 —4.7661+ ¢+ 2.6741—.1731 +.11014—.1832 —.09991
=—1.985—1.992¢+¢ , ang=225.°10 , log mag=.4401.

D

Then D must be multiplied by

E,__.02851(— 0654 +.1871) ¢ ~*"%(cos .187¢{+4 sin .187%)
- (.3741) (4.115+2.617%) (4.115—2.2431)

The angle of the coefficient is 15.°42; the log mag is 6.8106. 'When multiplied by D we have

[£(.0006233 + .0001716%) -+ (—.0008935 —.001583)] £—-°%4(cos .187¢4 1 sin 1874).
Taking the imaginary part, we have:
F= "¢ [¢ (.0006233 sin .187¢+.0001716 cos .187#) + (—.0008935 sin .187¢—.001583 cos .187#) ],

On adding G and F the effect on the long oscillation is

— 8/ J = 541000623 sin .187¢+.000172 cos .187%)
4+ (—.001353 sin .187¢+.000083 cos .187#)] 4)

The accuracy, of course, at this point is not great. The total result for 6 should give =0
and d8/di=0 when t=0, and it does within the estimated remaining accuracy.

Although the short oscillation is of importance if the values of dw/dt or d6/d: are desired,
it is (as seen above and in previous papers) of very little use in considering the variable w or ¢
at least in forced motions where the applied force operates relatively slowly (mild or moderate
as distinguished from sharp gusts); it is quite insignificant for the path. The above calcula-
tions could therefore be abridged somewhat by the device mentioned in my second paper of &
partial resolution with partial fractions:

1 . 0162 -+.089 —.01601A+.04263
Tn+.0664 £.1871) (A +4.18+2.43%) (A +4.1812.43¢%) ' (A+.0854+.1871)

The residues to be celculated for —6/J are those of

.02851A(.016)+.089) ond .02851M(—.01601) 4 .04263) .
(A F4.18 +2.43%) (A +.0654—.1871) (A +.0654+.1874) (\+.0654 — 1871)?
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In the first there is no residue for A= —.0654—.187% and the residue for A= —.0654+.1871 is
negligible compared with that of the second expression for A= —.0654 +.1874 (which is the easy
one to calculate). As the residues at A= —4.18 +£2.43% refer to the short oscillation, they
need not-be calculated, and therefore the only calculations really necessary for discussing
the path are those for the residues of the second expression. The work was carried through
on this basis and checked with that obtained by the complete analysis above to within 2 or 3%

On the abbreviated plan just outlmed let us calculate the result for ~w/J. The residues
are required for

M(.557N+2.458) eM(—.01601 N+ .04263)
(A+.0854 4-.1872) (A+.0854 —.1872)?

eM
at A= —.0854—.187¢ and A= —.0654 +.1877. The first is —5cr 1399 —aoaq (—-0654 — 1874)% (2.422 - .10421)
(.04368 +.0029941) = ¢~-"%¢ (cos .187¢— ¢ sin .187¢) (.02375—.01797%).
Of this the imaginary part is

G'=e—%54(— 02375 sin .187f—.01797 cos .187%).
The second is

AN (.bB7TA+2.458) & (—.016011+.04283)
Eii A+.0654 4+ .1872 h=—.0854+.187i.

Apply logarithmic differentiation as before, and the residue is seen to be the value of the
bracket multiplied by

2 2 557 ‘e 01601 1
B5TA+2.458 T T " 01601N+.04263 A+ .0654F.1873

or

2 B57 01601 1 . .
06541187 T 9.492 —.104%; T4~ 04368 —.002008 374~ 0208 —9.5320+1+2.674 +.2205

+.009874 — .3648 — .02506¢ =¢ —3.391 — 6.8734

The value of the bracket itself, apart from ¢, is —.006718 + .0088841.
Hence the residue is

e~%%¢(cos ,187¢ -1 sin ,187¢) [¢(—.006718 +.0088844) + (.08385 +.016074)).
Of this the imaginary part is
H == g05¢[t(— 006718 sin .187¢+.0160 cos .187¢) + (.08385 sin .187¢+.01607 cos .187%)].
Adding @ and H, the result for —w/J is

~wfdJ = e~ 4[t(—.00672 sin .187¢+.00888 cos ,187¢) + (.0610 sin .187¢—.0019 cos .187%).

The last term should, of course, check out so as to give zero when ¢ =0, but owing to the
omission of the terms corresponding to the short oscillation the check can not be expected to
be exact. Moreover the derivative should also vanish, but has the value +.02. This would
correspond to & ferm —w/J =.005¢*¥cos 2.43¢. Now when treating the gust J(1 —e—%), which
in its initial effects should not be far different from Je %% sin .187#, the term —w/J =%
(.004 cos 2.43¢—.003 sin 2.43t), for which the derivative has the value —.024, was actually
found. Such a failure to check as occurs in the value of —w/J here determined can not be
regarded as an indication of error in the calculation; and an independent calculation checks well
with the value above given for —w/J.

The path in space is given by

, |
g f (w+115.50)dt =J f'e—-m[t(—.oaz sin .187¢—.029 cos .187¢) -+ (.095 sin .187¢—
' - .008 cos .1874)]d¢.
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To integrate an expression like e cosbt or e%¢sin b¢, the simplest thing is to integrate
te? =te—ot% which may be found in integral tables, and take real and imaginary parts.

petdra e o Ycos bt +isin Bt)
e 3 —a+bh (—a+be)? !
(b sin bt — b - bt +2ab sin b
ftr“* CcOo3 bfrdt='6_° (b 20 az_l_g;cos )+(b’ G’) G((;f_l_b-z‘-)z s H

f te-o gin bt dt = e_u,[—t(a sina’bt:i b eos bt) | (—a?) sén(;’ itb—:)?ab cos bt].

Then
2 =J e 4[1(.34 cos .187¢—.03 sin .187t) —1.8 sin .187%].

The values for —2z/J are, for £ =10, 12, 14, respectively, about 1.4, 1.9, 2.0; and from then
on the values decresse. Compare this for —z/J in the case of the periodic gust %, =J sin .2¢,
where the corresponding values are 1.9, 2.6, 3.0. It is seen that the damped periodic gust is
decidedly less effective than the undamped gust. This is precisely what I foresaw, and indeed
what must be admitted a priori unless astonishing powers of discrimination are given to the
machine. A gust Je~%% gin .187¢ or J sin .2¢ does not differ in general character from
the gust of the form J(1—¢ %) or J(1 —¢*%*) during the first rise from zero to a maxi-
mum—the plot of the intensity is nearly a straight line until the maximum is approached and
the slopes of the lines are nearly equal. The machine is by its inertia an integrating, rather
than a differentiating device, and should give similar displacements in all four ceses. The
damping in the first case tends merely to diminish the effect. The maximum rise in the third
and fourth types is about —3.5/, in the second case about —3./ (as is natural since the third and
fourth gusts persist where the second begins to decrease after about 8 seconds), and the damped
gust gives —2.J (as is again natural, since the maximum of that gust is only about .6J owing to the
demping factor). The successive forced oscillations in the cese of the damped gust drop off
very rapidly, whereas the straight periodic gust brings a decided resonance into play after the
natural motion subsides. The conclusion is that the constants of integration are such as to
mask the effect of the damped gust in the first quarter period, whereas the damping makes the
effect small at the subsequent times of maxima.
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